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Abstract: We analyse a mathematical model that describes HIV infection of CD4+ T cells. We are interested in the effect of a small 
addition of infection on an equilibrium state. Using Rene Descartes’ theory of solutions, we show that if the so called basic 
reproduction number Ro<1, the infection will eventually die out but if Ro >1, then the infection will lead to full blown AIDS, In either 
case Ro is important in the eventual growth of the disease. 
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1.0 Introduction 

The Human Immunodeficiency Virus (HIV) mainly targets 

a host’s CD$+T cells. Chronic HIV infection causes 

gradual depletion of the CD4+ T cells pool, and thus 

progressively compromises the host’s immune response to 

opportunistic infections leading to Acquire Immune 

Deficiency Syndrome (AIDS). For this reason, the count of 

CD4+ T cells is a primary indicator used to measure 

progression of HIV infection. In a normal person, the level 

of CD4+ T cells in peripheral blood is regulated at a level 

between 800 and 1200 mm-3. Several mathematicians have 

proposed models to describe the vivo dynamics of T cell 

and HIV interaction see [1, 4, 5, 6, 7 and 3]. In particular 

Wang and Li [7] proposed the following model 

*

max

1dT T Ts T rT kVT
dt T

α
 +

= − − − − 
 

   (1.1) 

   
*

*dT kVT T
dt

β= −                                  (1.2) 

 

*dV N T V
dt

β γ= −                                          (1.3) 

      
Where  
s: constant production rate at which the body produces CD4+ T 

cells from precursor in the bone marrow and thymus, 

α: natural turnover rate of uninfected T cells, 

r: rate at which T cells multiply through mitosis, 

T: concentration of the susceptible CD4+ T cells, 

Tmax: maximum level of CD4+T cell concentration in the body, 

T*: the concentration of infected CD4+ T cells by HIV viruses, 

V: free HIV virus particle in the blood, 

β: natural turnover rate of infected T cells, 

γ: natural turnover rate of virus particles, 

kVT: describes the incident of HIV infection of healthy CD4+ T 

cells where k>0 is the infection rate, 

N: virus particle produced by infected CD4+ T cell during its 

life time. 

 
Perelson and Nelson [5] replaced equation (1.1) by 
   

 
*

max

1dT Ts T rT kVT
dt T

α
 

= − − − − 
 

 

And retained (1.2) and (1.3). This is due to the fact that the 

global dynamics of (1.1)-(1.3) and (1.1), (1.2) and (1.4) have 

not been fully established in literature. So the research goes on . 

It on this  basis that we are proposing the following model: 

 
 
2.0 Mathematical Formulation 

A model of HIV infection similar to (1.1) but using a 

logistic growth 
*

max

1 TrT
T

 
− 

 
 for infection CD4+T cells 

is proposed in this paper. Thus the model is 

              
*

max

1dT Ts T rT kVT
dt T

α
 

= − − − − 
 
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*

*dT kVT T
dt

β= −                    (2.1) 

 *dV N T V
dt

β γ= −    

    
 
3.0 Method of Solution 

3.1 Equilibria points 

Let , (2.1)sX T then becomes
rα

= −
−

 

( ) ( ) ( )
* *

max max

dX rsT rXT kVsr X kVT
dt r T T r

α
α α

= − − + − + −
− −

 

                          
*

*dT skV kVX T
dt r

β
α

= − −
−

 

    (3.1) 

                        *dV N T V
dt

β γ= −   

     
In matrix notation (3.1) becomes 

( ) ( ) ( )

( )

*

max
max*

*0
0

0

rs ksdX r rXT kVXr T rdt TX
dT ks T kVX
dt r

VdV N
dt

α
α α

β
α

β γ

   − −     − −− −              = − + −    −           −          
 

We now find equilibrium point by setting 
*

0dX dT dV
dt dt dt

= = = , ad solving the three 

simultaneous equations. The system of equations 
yield two equilibria points 

( )

( )
( )

( )
( )

max*

max

max

max

0,0,0

,

,

oA and

ksN r
kN r

ksN r T
A

r kT N
ksN r T N

r kT N

γα γ
α

γα γ
γ β

γα γ β
γ β γ

=

 − +
 − 
 − +
 =

+ 
 − + 
 + 

 

Ao is infection free, while A* is the infection 
equilibrium. The basic reproduction parameter Ro 

is defined by 
( )o
NksR

rγ α
=

−
 

3.2 Nature of equilibrium points 
We shall need the following theorems in the 

analysis of the nature of the equilibria points. The 

two theorems are already in the literature but we 

shall state and prove  new theorems that could be 

derived from the theorems. 

Theorem (Perron [1]) 

 Let (x, t)x Ax f= +


 where the matrix A has 

all eigenvalues with negative real parts. Let f be 

real and continuous for small 

0 (x, t) 0 0x and t and f x as x≥ = →
 uniformly in t, t>0.Then the zero solution of 

(x, t)x Ax f= +


 is uniformly asymptotically 

stable, 

Theorem (Descartes’ rule of sign [2]) 

 The number of positive zeros of polynomial with 

real coefficients is either equals to the number of 

variations in sign of the polynomial or less than 

this by an even umber. 

We are now in position to proceed to the theorem 

Theorem 3.1 

The zero solution of the infected free equilibrium 

is asymptotically stable if Ro<1 and if r<α. 

Otherwise the zero solution is unstable. 

Theorem 3.2 
The zero solution of the infected – free 

equilibrium is unstable if Ro >1. 
Theorem 3.3 
                     If then the equilibrium point A* is uniformly 
asymptotically stable 
Theorem 3.4 

 
( )( )

( )

( )( )

1
max

2
max max

max

max max

3
max

max

max max

r ksNLet r
kNT

ksN r rr
kNT kNT

r T r rs
T r k NT

rr ksN
kNT

T r rs r k N
r k NT T

γβ γ
γ

γ γβ γ β γ
γ

γ β α
γ β

γβ

γ β α γ β
γ β

= + + +

   
= + + + +   

   
− +

−
+

 
= + − 

 
− +  

+ +  

 

max max.Let r If T sr rTα βα β= + >  and r1>0, 
r2>0,r3>0, then the equilibrium point A*is uniformly 
asymptotically stable. 
 
Theorem 3.5 
Let r4>, r5>r6>o, then the infection equilibrium A* is 
asymptotically stable  
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4
max

r ksNr
kNT

γβ γ
γ

= + + +  

( )( )
( )

5
max max

max

max max

ksN r rr
kNT kNT

r T r rs
T r k NT

γ γβ γ β γ
γ

γ β α
γ β

   
= + + + +   

   
− +

−
+

 

( )( )

3
max

max

max max

rr ksN
kNT

T r rs r k N
r k NT T

γβ

γ β α γ β
γ β

 
= + − 

 
− +  

+ +  

 

Theorem 3.6 

( )
( )( )

2
max

max

*

1oIf R and kNT r

krN T r rs

then A is locally asymptotically stable

β γ

β α

> + >

− +  

We now prove the theorems. 
Proof of Theorem 3.1 
By (2.1), the Jacobian matrix at Ao 

J (Ao) =

( ) ( ) ( )

( )

max

0

0

rs ksr
r T r

ks
r

N

α
α α

β
α

β γ

 − − − − 
 

− − 
 −
 
 

 

So the eigenvalues are given by 

( )( ) ( ) ( )
2 0 .ksNr i e

r
βα λ λ β γ λ βγ

α
 

− − − + + + − =  − 
 
                                                               

( )( ) ( ) ( )( )2 1 0or Rα λ λ β γ λ βγ− − − + + + − =  

( ) ( ) ( )2
1 1 0or and Rλ α λ β γ λ βγ= − − + + + − =  

0, 0, r 0. 1,oNow So if Rβ γ> > > <  the number of 
variation in sign is zero. Hence all eigenvalues are negative. 
Therefore Ao is uniformly asymptotical stable. 
 
Proof of Theorem 3.2 
 If Ro>1, from the proof of theorem 1, 

( ) ( )2 1 0oRλ β γ λ βγ+ + + − > 0, 0, r 0β γ> > >  
implies that the number of variations in sign is 1. So J (Ao) has 
a positive root. Hence Ao is unstable. 
 
Proof of Theorem 3.3 
The Jacobian of the matrix of (2.1) at A* translated to the 
origin is  

( )
( )

max

max*

max

(A )

0

ksN r
kNT N

k T ksN r
J

r k NT N
N

γ γ
γ

β αγ γ γβ
γ β γ

β γ

 
 
 
 − + −

= − 
− 

 −
  
 

 

( )( )
( )

max

max

0
kN T r sr

so if
r k NT
β α
γ β

− +
=

+
 then the eigenvalues 

are 1 2 3
max

, ,kNs r
kNT

γλ λ β λ γ
γ

= − = − − = − . The results 

follow since all the eigenvalues are negative. 
 
Proof of Theorem 3.4 
If α=r, ri >0,i=1,2,3 and if max maxT sr rTβα β+ > , then 
J(A*) translate to the origin is 

max

max max

0

0

ksN r
kNT N

ksNr r
r k NT kNT

N

γ γ
γ

γβ
γ β

β γ

 − 
 
 

− − + 
 −
 
 

 

The eigenvalues is obtained by satisfy
3 2

1 2 3 0r r rλ λ λ+ + + = . The number of variation in signs 
is zero. Clearly λ=0 is not a solution if we replace λ by -λ. The 
number of variation in sign is 3. Hence all the eigenvalues have 
negative real parts. Hence A* is uniformly asymptotically 
stable. 
 
Proof of Theorem 3.5 
The eigenvalues of J(A*) translated to the origin satisfy 

3 2
4 5 6 0r r rλ λ λ+ + + = . If r4>0,r5>0 and r6>, then as in 

theorem (3.4) all eigenvalues are negative and then A* is 
asymptotically stable, 
 
Proof of Theorem 3.6 

( )
( )( )

2
max

max

1oIf R and r kNT

rkN T r sr

γ β

β α

> + >

− +
. The eigenvalues are 

given by 
3 2

4 5 6 0r r rλ λ λ+ + + = . Clearly r4>0 

Now r5=
( )( )

( )

max max

max

max max

ksN r r
kNT kNT

r T r rs
T r k NT

γ γβ γ β γ
γ

γ β α
γ β

   
+ + + +   

   
− +

−
+

 

  So r5>0 

( ) ( )( )2
max max 0,kNT r kN r T r rsγ β γ γ β α+ − − + >  
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But 
( )

( )

2
max

2
max max1

kNT r

kN r T s kN r T

γ β γ

γ β γ β α

+ +

+ >
, hence r5>0 

Also r6= ( )( )
max

max

max max

rkNs
kNT

T r rs r kN
r k NT T

γβ

γ β α γ β
γ β

 
+ − 

 
 − +  

+   +   

 

                      .skN rβ βγα βγ= − +  
Now Ro>1 implies that skN rγ γα+ >  
Therefore r6>o. Hence A* is locally asymptotically stable. 
4.0. Numerical Solution 
4.1 Numerical Solution of infection free equilibrium 
 
4.2 Numerical Solution of infection equilibrium 
 

 
 
 
 
 
 
 

 

 

 

                      

Figure 2: Graph of y(uninfected T cells), z(infected T cells), 
w(HIV virus) against time at r=0.05,α=0.02,    β=0.3,γ=2.4                                           

 

  Figure3:Graph of y(uninfected T cells), z(infected T 
cells),w(HIV virus) against time at r=0.8, α=0.02,β=0.3,γ=2.4 
 

         

Figure 4: Graph of y(uninfected T cells), z(infected T cells), 
w(HIV virus) against time at r=0.05,α=0.02, β=0.3,γ=2.4                    

 

    Figure 5:Graph of y(uninfected T cells), z(infected T 
cells),w(HIV virus) against time at r=0.8, α=0.02, β=0.3,γ=2.4 
 
 

    
Figure 8: Graph of y(uninfected T cells), z(infected T cells), 
w(HIV virus) against time at r=3,α=0.1, β=1.1,γ=3.2                  
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 Figure 6: Graph of y(uninfected T cells), z(infected T 
cells),w(HIV virus) against time at r=0.05,α=0.1, β=1.1,γ=3.2             

               
Figure 7:Graph of y(uninfected T cells), z(infected T cells), 
w(HIV virus) against time at r=0.8,α=0.1, β=1.1,γ=3.2 
 
 
 
 
 

           
    Figure 9: Graph of y(uninfected T cells), z(infected T 
cells),w(HIV virus) against time at r=10,α=0.1, β=1.1,γ=3.2 

         
Figure 10: Graph of y(uninfected T cells), z(infected T cells),  
w(HIV virus) against time at max maxT sr rTβα β+ =  
r=0.05,α=0.02,β=0.3,γ=2.4               

 
   Figure 11:Graph of y(uninfected T cells), z(infected T 
cells),w(HIV virus) against time at max maxT sr rTβα β+ =  
r=0.8, α=0.02,β=0.3,γ=2.4 

                  
Figure 12: Graph of y(uninfected T cells), z(infected T cells), 
w(HIV virus) against time at max maxT sr rTβα β+ =
,r=3,α=0.02,β=0.3,γ=2.4                
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Figure 13:Graph of y(uninfected T cells), z(infected T cells), 
w(HIV virus) against time at max maxT sr rTβα β+ =
,r=10,α=0.02,β=0.3,γ=2.4                 
5.0 Discussion of Results 

The infection free equilibrium of (2.1) is stable if Ro<1 

and r< α. The infection free equilibrium (2.1) is unstable if 

Ro>1. The infection equilibrium (2.1) is asymptotically 

stable if max maxT sr rTβα β+ = . Also if α=r, the zero 

solution of the infection equilibrium (2.1) is asymptotically 

stable if max maxT sr rTβα β+ >  , r1>0,r2>0,r3>0. If 

Ro>1, 

( ) ( )( )2
max maxr kNT rkN T r srγ β β α+ > − +  then 

the infection equilibrium (2.1) is locally asymptotically 

stable. 

 Figure 1 shows the stability of infection free 

equilibrium, in figures 2,3 and 4, at α(     turnover rate of 

uninfected T cells) =0.02 , ,β(turnover rate of infected T 

cells)=0.3 and γ     turnover rate of virus particles)=2.4 as r 

which is the rate at which T cell multiply through mitosis 

increases the rate at which the virus  infect the uninfected 

T cells increases and the  infected T cells increases, The 

figures shows the instability nature of the infected 

equilibrium, in figure 5 at a particular time, the infected T 

cells (z) and virus  kept on escalating at a constant rate. In 

figures 6, 7, 8 and 9 as α , β and γ are increased we 

observed that the infection rate  is  increased. The graphs 

also show the unstability nature of infection equilibrium. 

While figures 10, 11, 12 1nd 13 show the asymptotic 

behaviour of infection equilibrium as 

max maxT sr rTβα β+ = . In these figures 10, 11, 12 and 

13 as r increases the earlier the infection T cells (z) and 

HIV virus (w) got eradicated and uninfected T cells 

increases. 

 
6.0 Conclusion 
  In this paper, we modified an existing HIV/AIDS 

model. We investigated the characteristic equation and 

discussed the stability of equilibrium points that were not 

previously considered. 

 We formulated stability theorems and lemma based on 

Descartes’ rules of signs. These lemma and theorems allow 

us to discuss the nature of stability of equilibria point when 

no numerical values were given to the associated 

parameters. 

 We solve existing characteristics equation numerically 

using realistic values for the parameters and we interpreted 

the graphs that resulted from the numerical solution. 

 The stability criteria showed that if drugs could be 

procured to satisfy the criteria, we may be in a position to 

stem the spread of AIDS. 
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